DeviceNet Overview

DeviceNet is a CAN based Layer 7 protocol originally developed by Allen-Bradley. Operation of the DeviceNet is based on an object-oriented communications model. DeviceNet is maintained by the Open DeviceNet Vendor Association (ODVA).

DeviceNet is designed to connect simple devices from multiple vendors that comply with the DeviceNet network standards. DeviceNet device profile standards provide interchangeability between device manufacturers.

Each DeviceNet segment can connect up to 64 devices. It is a four-wire system delivering 8 amps at 24VDC, sufficient for field devices such as solenoid valves. The four wires carry signal and power typically on a single cable. Multiple power supplies can be used for redundancy and additional power requirements.

DeviceNet uses a trunk (bus) line with drop cables connecting devices. The trunkline requires 121 ohm terminating resistors at each end of the trunk.

DeviceNet supports Master/Slave, Peer-to-Peer, and Multi-Master network models. Data can be transferred on a cyclic or change of state basis using a Producer/Consumer paradigm that conserves network bandwidth. DeviceNet is very commonly used for communications from host systems to motor control centers and variable speed drives.

DeviceNet Network Highlights

- **Type of Network**: Device Bus
- **Physical Media**: Twisted pair, shielded
- **Network Topology**: Bus with drops
- **Maximum Devices**: 62 devices per segment
- **Maximum Distance**: 6,000 meters (using Thick cable)
- **Power and Communications on same cable**: 24VDC power on power bus (multiple supplies may be used for additional power or as backup). A separate 24VDC power supply for communication bus is recommended.
- **Device Power Supply**: 24VDC on power bus
- **Wiring Types**:
 - **Thick Cable**: (ODVA Type II cable), generally used for trunk cable
 - **Thin Cable**: (ODVA Type I cable), commonly used for drop cables
 - **Mid Cable**: (ODVA Type III cable), used when more flexible drop cable is needed
 - **Blue/White conductors for communications**
 - **Red/Black conductors for power**
- **Cost When Simplicity is Needed**
 - **Advantages**:
 - Excellent support for motor control centers, variable frequency drives, and conventional I/O
 - Moderate device cost adder
 - I/O modules allow for conventional analog and discrete device integration
 - Relatively fast transmission speeds:
 - 125kb @ 420m
 - 250kb @ 200m
 - 500kb @ 100m
 - Power and Signal on same cable
 - Up to 64 addressable nodes
 - Wide variety of topologies available, including Tied, Line, Drop
 - Duplicate node address detection
 - Supports some device diagnostics
 - **Drawbacks**:
 - Slaves can only be owned by one master
 - Does not support Intrinsically Safe installations

DeviceNet is feature-rich, yet cost effective.

DeviceNet is most commonly used when device populations are primarily discrete but have some analog, and when motor control centers and variable frequency drives are present.

TopWorx Comments on DeviceNet

Strengths

- DeviceNet is capable. DeviceNet delivers a solid combination of cost-effective simplicity with a bit of added functionality. It is designed to handle discrete devices but can support analog signals and some diagnostics as well.
- DeviceNet is robust. DeviceNet supplies 8 amps of power, offers acceptable cable run lengths, and can control up to 64 devices per segment.

Limitations

- **Nazardous Areas**
 - Since DeviceNet is an 8 amp bus, it cannot be intrinsically safe.
 - TopWorx has created a variety of solutions for installing DeviceNet in hazardous areas.

- **CLASS I, DIV 1 (Zone 1)** and **CLASS I, DIV 2 (Zone 2)** hazardous environments.
- **Cost When Simplicity is Needed**
 - If customers have only discrete devices and need no added functionality, then some other protocols are less expensive.

- **When to Use DeviceNet**
 - Generally speaking, TopWorx recommends DeviceNet when:
 - device populations are primarily discrete and secondary analog
 - end users desire some diagnostic capability for predictive environments
 - plants are not intrinsically safe

Conventional I/O System vs. DeviceNet Network

- **Advantages**:
 - Technology is already understood
 - Lower device cost
 - Independent wiring from devices to the control system means wiring problems with one device don’t affect other field devices
- **Drawbacks**:
 - Higher installed cost
 - Point-to-point wiring is expensive
 - Many wiring connections:
 - are labor intensive to install
 - create many points of failure
 - increase complexity when troubleshooting
 - require large amounts of cabinet or rack space for installation of terminal blocks
 - create time-consuming initial checkout and startup
 - Expansion requires duplicating the entire wiring scheme for each additional point

Advantages

- **Cost**
 - Lower installed cost
 - I/O modules allow for conventional analog and discrete device integration
 - Relatively fast transmission speeds:
 - 125kb @ 420m
 - 250kb @ 200m
 - 500kb @ 100m
 - Power and Signal on same cable
 - Up to 64 addressable nodes
 - Wide variety of topologies available, including Tied, Line, Drop
 - Duplicate node address detection
 - Supports some device diagnostics

Drawbacks

- Slaves can only be owned by one master
- Does not support Intrinsically Safe installations