Motor Basics
AGSM 325

Motors vs Engines

• Motors convert electrical energy to mechanical energy.
• Engines convert chemical energy to mechanical energy.
Motors

- Advantages
 - Low Initial Cost - $/Hp
 - Simple & Efficient Operation
 - Compact Size – cubic inches/Hp
 - Long Life – 30,000 to 50,000 hours
 - Low Noise
 - No Exhaust Emissions
 - Withstand high temporary overloads
 - Automatic/Remote Start & Control

- Disadvantages
 - Portability
 - Speed Control
 - No Demand Charge

Magnetic Induction

- Simple Electromagnet

- Like Poles Repel
- Opposite Poles Attract
Operating Principle

Motor Parts

- Enclosure
- Stator
- Rotor
- Bearings
- Conduit Box
- Eye Bolt
Enclosure

- Holds parts together
- Helps with heat dissipation
- In some cases, protects internal components from the environment.

Stator (Windings)

- “Stationary” part of the motor sometimes referred to as “the windings”.
- Slotted cores made of thin sections of soft iron are wound with insulated copper wire to form one or more pairs of magnetic poles.
Rotor

• “Rotating” part of the motor.
• Magnetic field from the stator induces an opposing magnetic field onto the rotor causing the rotor to “push” away from the stator field.

Wound Rotor Motors

• Older motor designed to operate at “variable speed”
• Advantages
 – Speed Control, High Starting Torque, Low Starting Current
• Disadvantages
 – Expensive, High Maintenance, Low Efficiency
Bearings

• Sleeve Bearings
 – Standard on most motors
 – Quiet
 – Horizontal shafts only
 – Oil lubricated

• Ball (Roller) Bearings
 – Support shaft in any position
 – Grease lubricated
 – Many come sealed requiring no maintenance

Other Parts

• Conduit Box
 – Point of connection of electrical power to the motor’s stator windings.

• Eye Bolt
 – Used to lift heavy motors with a hoist or crane to prevent motor damage.
Motor Speed

• Synchronous Speed
 – Speed the motor’s magnetic field rotates.
 – Theoretical speed with no torque or friction.
• Rated Speed
 – Speed the motor operates when fully loaded.
 – Actual speed at full load when supplied rated voltage.

Synchronous Speed

• Theoretical Speed
• A well built motor may approach synchronous speed when it has no load.
• Factors
 – Electrical Frequency (cycles/second)
 – # of poles in motor

\[
\text{Synchronous Speed} = \frac{120 \times \text{Frequency}}{\text{# of Poles}}
\]
Rated Speed

- Speed the motor runs at when fully loaded and supplied rated nameplate voltage.

Motor Slip

- Percent difference between a motor’s synchronous speed and rated speed.
- The rotor in an induction motor lags slightly behind the synchronous speed of the changing polarity of the magnetic field.
 - Low Slip Motors
 - “Stiff”….High Efficiency motors
 - High Slip Motors
 - Used for applications where load varies significantly…oil pump jacks.
Torque

- Measure of force producing a rotation
 - Turning Effort
 - Measured in pound-feet (foot-pounds)

Torque-Speed Curve

- Amount of Torque produced by motors varies with Speed.
- Torque Speed Curves
 - Starting Torque
 - Pull Up Torque
 - Breakdown Torque
Motor Power

- **Output Power**
 - Horsepower
 - Amount of power motor can produce at shaft and not reduce life of motor.
- **Input Power**
 - Kilowatts
 - Amount of power the motor consumes to produce the output power.

Calculating Horsepower

- Need Speed and Torque
 - Speed is easy
 - Tachometer
 - Torque is difficult
 - Dynamometer
 - Prony Brake

\[
HP = \frac{RPM \times TORQUE}{5252}
\]
Watt’s Law

- Input Power
- Single Phase
 - Watts = Volts X Amps X p.f.
- Three Phase
 - Watts = Avg Volts X Avg Amps X p.f. X 1.74

Example

- Is a 1 Hp 1-phase motor driving a fan overloaded?
 - Voltage = 123 volts
 - Current = 9 amps
 - p.f. = 78%
- Watts = Volts X Amps X p.f.
 Watts = 123 volts X 9 amps X 0.78 = 863.5 Watts
 864 Watts / 746 Watts/Hp = 1.16 Hp
- Is the motor overloaded?
Electrical = Input

• We measured Input
• Motors are rated as Output
• Difference?
 – Efficiency
• If the motor is 75% efficient, is it overloaded?
• Eff = Output / Input
• Output = Eff X Input
 \[0.75 \times 1.16 \text{ Hp} = 0.87 \text{ Hp} \]
• The motor is NOT overloaded

Example #2

• Is this 10 Hp, 3-phase motor overloaded?
 – Voltages = 455, 458, and 461 volts
 – Currents = 14.1, 14.0 and 13.9 amps
 – P.f. = 82%
• Watts = Volts_{avg} X Amps_{avg} X p.f. X 1.74
 \[\text{Watts} = 458v \times 14a \times 0.82 \times 1.74 = 9148.6 \text{ Watts} \]
 \[9148.6 \text{ Watts} / 746 \text{ Watts/Hp} = 12.26 \text{ Hp} \]
• Is the motor overloaded?
Example #2

- We measured Input
- Motor is rated as Output
- Difference?
 - Efficiency
- If the motor is 90% efficient, is it overloaded?
- Eff = Output / Input
- Output = Eff X Input
 \[0.90 \times 12.26 \text{ Hp} = 11.0 \text{ Hp}\]
- The motor IS overloaded!
- How bad is the overload?

Motor Types
CLASSIFICATION OF MOTORS

www.PAControl.com
Synchronous vs Induction Motors

• Synchronous Motors
 - Turn at exactly the same speed as the rotating magnetic field.
 - 3600 rpm, 1800 rpm, etc.

• Induction Motors
 - Turn at less than synchronous speed under load.
 - 3450 rpm, 1740 rpm, etc.

NEMA 3 Phase Motors

• 3 Phase Induction Motors
• NEMA Torque-Speed Design Types
 – A, B, C, D, E
Design Type B

- Today’s “Standard” 3-Phase Motor
- Good Starting Torque
 - In-rush amps 4-6 times full load amps
 - Good breakdown-torque
 - Medium Slip

Design Type A

- The “old” Standard
- Higher starting torque than “B”.
- Higher in-rush current (5-8 times full load amps)
- Good breakdown torque
Design Type C

- Common OEM equipment on reciprocating pumps, compressors and other “hard starting” loads.
- High starting torque
- Moderate starting current (5-8 times FLA)
- Moderate breakdown torque

Design Type D

- Common on applications with significant loading changes as a machine operates.
- Impact Loads
 - Punch Presses, Metal Shears, etc.
 - Pump Jacks

www.PAControl.com
Design Type E

- Newest NEMA Category
- Newer ultra-high efficiency motors
 - Higher Starting Torque
 - Higher Starting Current (8-12 times Running)
 - Ultra Low Slip (Higher Rated Speed)

Single Phase Induction Motors

- Are not “self starting”
 - Require a starting mechanism.
- The name generally describes its “starting mechanism”.
 - Split Phase
 - Capacitor Run
 - Capacitor Start
 - Capacitor Start-Capacitor Run
 - Shaded Pole
 - Synchronous
 - Universal
Split Phase Motor

• Common small single phase motor
 – Good Starting Torque
 – Moderate Efficiency
 – Moderate Cost

• Small conveyors, augers, pumps, and some compressors

• 1/20th to ¾ Hp, available to 1.5 Hp

Split Phase Motor

• Starting winding in parallel with Running winding

• Switch operates at 70-80% of full speed.

• Centrifugal Switch
 – Sticks Open
 – Sticks Shut
Capacitor Run Motor
(Permanent Split Capacitor or PSC)

• Primarily a fan and blower motor.
• Poor starting torque
• Very low cost motor.

Permanent Split Capacitor (PSC)

• Capacitor in “Capacitor Winding”
 – Provides a “phase shift” for starting.
 – Optimizes running characteristics.
• No centrifugal switch
Capacitor Start Motor

- Larger single phase motors up to about 10 Hp.
- A split phase motor with the addition of a capacitor in the starting winding.
- Capacitor sized for high starting torque.

Capacitor Start Motor

- Very high starting torque.
- Very high starting current.
- Common on compressors and other hard starting equipment.
Capacitor Start-Capacitor Run

- Both starting and running characteristics are optimized.
 - High starting torque
 - Low starting current
 - Highest cost
- For hard starting loads like compressors and pumps.
- Up to 10 Hp or higher is some situations.

Capacitor Start-Run Motor

- Larger single phase motors up to 10 Hp.
- Good starting torque (less than cap start) with lower starting current.
- Higher cost than cap start.
Synchronous Motor

- Special design for “constant speed” at rated horsepower and below.
- Used where maintaining speed is critical when the load changes.

Universal Motor

- Runs on AC or DC
- Commutator and brushes
- Generally found in portable power tools.
- Lower Hp sizes
Universal Motor

- Very high starting torque.
- Higher torque on DC than AC (battery operated tools)
- The higher the rpm, the lower the torque.